p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).8C22, (C2xD4).7C4, C4.46(C2xD4), C4o(C4.D4), (C2xC4).122D4, C4.D4:6C2, (C22xC4).6C4, (C2xC4).3C23, C23.9(C2xC4), C4o(C4.10D4), C4.10D4:6C2, (C2xM4(2)):9C2, C4.32(C22:C4), (C2xD4).45C22, (C2xQ8).39C22, C22.2(C22:C4), C22.10(C22xC4), (C22xC4).33C22, (C2xC4).7(C2xC4), (C2xC4oD4).3C2, C2.16(C2xC22:C4), SmallGroup(64,94)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).8C22
G = < a,b,c,d | a8=b2=c2=1, d2=a2, bab=dad-1=a5, cac=ab, bc=cb, dbd-1=a4b, dcd-1=a4bc >
Subgroups: 121 in 75 conjugacy classes, 39 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4.D4, C4.10D4, C2xM4(2), C2xC4oD4, M4(2).8C22
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C2xC22:C4, M4(2).8C22
Character table of M4(2).8C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(10 14)(12 16)
(1 11)(2 16)(3 9)(4 14)(5 15)(6 12)(7 13)(8 10)
(1 8 3 2 5 4 7 6)(9 12 11 14 13 16 15 10)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,11)(2,16)(3,9)(4,14)(5,15)(6,12)(7,13)(8,10), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,11)(2,16)(3,9)(4,14)(5,15)(6,12)(7,13)(8,10), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,11),(2,16),(3,9),(4,14),(5,15),(6,12),(7,13),(8,10)], [(1,8,3,2,5,4,7,6),(9,12,11,14,13,16,15,10)]])
G:=TransitiveGroup(16,71);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(10 14)(12 16)
(1 7)(2 4)(3 5)(6 8)(9 15)(10 12)(11 13)(14 16)
(1 10 3 12 5 14 7 16)(2 15 4 9 6 11 8 13)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (1,10,3,12,5,14,7,16)(2,15,4,9,6,11,8,13)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (1,10,3,12,5,14,7,16)(2,15,4,9,6,11,8,13) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,7),(2,4),(3,5),(6,8),(9,15),(10,12),(11,13),(14,16)], [(1,10,3,12,5,14,7,16),(2,15,4,9,6,11,8,13)]])
G:=TransitiveGroup(16,86);
M4(2).8C22 is a maximal subgroup of
C23.3C42 (C22xC8):C4 2+ 1+4.2C4 C4oD4.D4 (C22xQ8):C4 (C2xC42):C4 (C2xC8):D4 M4(2):21D4 C42.9D4 C4oC2wrC4 C2wrC4:C2 C23.(C2xD4) (C2xD4).135D4 C4:1D4.C4 (C2xD4).137D4 M4(2).24C23 M4(2).25C23 C42.313C23 C42.12C23 C42.13C23 (C4xD5).D4 (C2xD4).9F5
M4(2).D2p: M4(2).40D4 M4(2).50D4 C42.427D4 M4(2).8D4 M4(2).9D4 M4(2).37D4 M4(2).38D4 M4(2).19D6 ...
(C2xC4p).D4: C23.5C42 (C2xC8).103D4 C42.131D4 M4(2).10C23 (C6xD4).16C4 (D4xC10).29C4 (D4xC14).16C4 ...
M4(2).8C22 is a maximal quotient of
C42.371D4 C23.8M4(2) C42.42D4 C23:M4(2) C23:C8:C2 C42.372D4 C42.66D4 C42.376D4 C42.69D4 C42.72D4 C42.409D4 C42.410D4 C42.78D4 C42.79D4 C42.417D4 C42.418D4 C42.84D4 C42.86D4 C23.15C42 C4xC4.D4 C4xC4.10D4 C42.97D4 (C22xC4).276D4 M4(2):20D4 C42.128D4 (C4xD5).D4 (C2xD4).9F5
M4(2).D2p: M4(2).45D4 C42.115D4 M4(2).19D6 M4(2).21D6 M4(2).31D6 M4(2).19D10 M4(2).21D10 M4(2).31D10 ...
(C2xD4).D2p: (C23xC4).C4 C42.96D4 (C6xD4).16C4 (D4xC10).29C4 (D4xC14).16C4 ...
Matrix representation of M4(2).8C22 ►in GL4(F5) generated by
0 | 1 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,0,0,2,1,0,0,0,0,2,0,0,0,0,1,0],[1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,0,0,4,3,0,0,0,0,4,0,0,0,0,3,0] >;
M4(2).8C22 in GAP, Magma, Sage, TeX
M_4(2)._8C_2^2
% in TeX
G:=Group("M4(2).8C2^2");
// GroupNames label
G:=SmallGroup(64,94);
// by ID
G=gap.SmallGroup(64,94);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,158,963,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^2=1,d^2=a^2,b*a*b=d*a*d^-1=a^5,c*a*c=a*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=a^4*b*c>;
// generators/relations
Export